Deforestation Prediction Using Neural Networks and Satellite Imagery in a Spatial Information System
نویسنده
چکیده
Deforestation, as one of the challenging environmental problems in the world, has been recorded the most serious threat to environmental diversity and one of the main components of land-use change. In this paper, we investigate spatial distribution of deforestation using artificial neural networks and satellite imagery. Modeling deforestation can be conducted considering various factors in determining the relationship between deforestation and environmental and socioeconomic factors. Therefore, in order to ascertain this relationship, the proximity to roads and habitats, fragmentation of the forest, height from sea level, slope, and soil type. In this research, we modeled land cover changes (forests) to predict deforestation using an artificial neural network due to its significant potential for the development of nonlinear complex models. The procedure involves image registration and error correction, image classification, preparing deforestation maps, determining layers, and designing a multi-layer neural network to predict deforestation. The satellite images for this study are of a region in Hong Kong which are captured from 2012 to 2016. The results of the study demonstrate that neural networks approach for predicting deforestation can be utilized and its outcomes show the areas that destroyed during the research period.
منابع مشابه
Accuracy comparison of Elamn and Jordan artificial neural networks for air particular matter concentration (PM 10) prediction using MODIS satellite images, a case study of Ahvaz.
Due to the complexity of air pollution action, artificial intelligence models specifically, neural networks are utilized to simulate air pollution. So far, numerous artificial neural network models have been used to estimate the concentration of atmospheric PMs. These models have had different accuracies that scholars are constantly exceed their efficiency using numerous parameters. The current...
متن کاملValidation of Volunteered Geographic Information Landuse Change Using Satellite Imagery
Land use change monitoring is one of the main concerns of managers and urban planners due to human activities and unbalanced physical development in urban areas. In this paper, a combination of remote sensing data and volunteered geographic information was used to assess the quality of volunteered geographic information on land use and land cover changes monitoring. For this purpose, the ORBVIE...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملAnalytic of Spatial Conflict in the rural tourism area of Barghan
Land cover changes as a basic factor in environmental change act and has become a global threat. In this research, changes in land cover in rural tourism areas by neural networks, Markov chains in software ArcGIS, ENVI, Terrset using the TM and OLI satellite imagery, Landsat Satellite was surveyed for a period of 30 years for three periods of 1985, 2000, and 2015. The findings of the first stag...
متن کاملMulti-period monitoring and prediction of forest cover loss using logistic regression model in Arasbaran catchments
Knowledge and understanding of changes in forest cover in relation to environmental factors (topography) can be valuable in terms of conservational and protective guidances. The purpose of this study was to identify, quantify and predict deforestation in relation to topographic variables using logistic regression model. The Arasbaran catchments (Naposhtehchay, Ilginehchay and Mardanqumchay) in ...
متن کامل